The Road from Quantum Chemistry to Quantum Materials

Laura Gagliardi Department of Chemistry, Pritzker School of Molecular Engineering, James Franck Institute, Chicago Center for Theoretical Chemistry The University of Chicago

lgagliardi@uchicago.edu

The rapidly evolving field of quantum computing demands precise control over the superposition states of qubits. In this lecture, I will present our advancements in the calculation of singlet-triplet gaps and zero-field splitting parameters within organometallic complexes, featuring prominent transition metal ions like Cr and V.[1] These complexes hold promise as molecular qubit candidates. I will delve into the quantum chemistry methodologies that we develop, founded upon combining multireference wave functions with density functional theory.[2][3] By harnessing these methodologies, we gain unique insights into the intricate quantum behavior of these systems, shedding light on their suitability for quantum computation. Moreover, I will discuss the convergence of computation and data-driven techniques in the realm of quantum materials discovery.

[1] A. Sauza-de la Vega, R. Pandharkar, G. D. Stroscio, A. Sarkar, D. G. Truhlar, and L. Gagliardi, Multiconfiguration Pair-Density Functional Theory for Chromium(IV) Molecular Qubits, *JACS Au*, **2022**, 2, 2029–2037. DOI: 10.1021/jacsau.2c00306

[2] S. Haldar, A. Mitra, M. Hermes, and L. Gagliardi, Local Excitations of a Charged Nitrogen Vacancy in Diamond with Multireference Density Matrix Embedding Theory, *J. Phys. Chem. Lett.* 0, **2023**, 14, 4273–4280, DOI: 10.1021/acs.jpclett.3c00551

[3] M. Otten, M. R. Hermes, R. Pandharkar, Y. Alexeev, S. K. Gray, and L. Gagliardi, Localized Quantum Chemistry on Quantum Computers, *J. Chem. Theory Comput.*, **2022**, 18, 7205–7217. DOI: 10.1021/acs.jctc.2c00388